skip to main content


Search for: All records

Creators/Authors contains: "German, Christopher R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Deep-sea hydrothermal vent geochemistry shapes the foundation of the microbial food web by fueling chemolithoautotrophic microbial activity. Microbial eukaryotes (or protists) play a critical role in hydrothermal vent food webs as consumers and hosts of symbiotic bacteria, and as a nutritional source to higher trophic levels. We measured microbial eukaryotic cell abundance and predation pressure in low-temperature diffuse hydrothermal fluids at the Von Damm and Piccard vent fields along the Mid-Cayman Rise in the Western Caribbean Sea. We present findings from experiments performed under in situ pressure that show cell abundances and grazing rates higher than those done at 1 atmosphere (shipboard ambient pressure); this trend was attributed to the impact of depressurization on cell integrity. A relationship between the protistan grazing rate, prey cell abundance, and temperature of end-member hydrothermal vent fluid was observed at both vent fields, regardless of experimental approach. Our results show substantial protistan biomass at hydrothermally fueled microbial food webs, and when coupled with improved grazing estimates, suggest an important contribution of grazers to the local carbon export and supply of nutrient resources to the deep ocean.

     
    more » « less
  2. Free, publicly-accessible full text available July 1, 2024
  3. Abstract

    The noble gas signature of incoming Pacific Bottom Water (PBW), when compared to North Atlantic Deep Water, indicates the addition of 450 ± 70 GT a−1glacial melt water to form AABW and subsequently PBW. The downstream evolution of this signature between the southern (20°S to equator) and northern (25°–45°N) bottom waters indicates a decrease in sea level pressure around Antarctica over the past two millennia. Vertical profiles of noble gases in the deep Pacific show exponential relationships with depth with scale heights identical to temperature and salinity. Unlike the other noble gases, helium isotopes show evidence of mid‐depth injection of non‐atmospheric helium. Using observed deviations from exponential behavior, we quantify its magnitude and isotope ratio. There is a clear latitude trend in the isotope ratio of this added helium that decreases from a high exceeding 9 RA(atmospheric3He/4He ratio) in the south to around 8 RAnear the equator. North of 30–40°N, it systematically decreases northward to a low of ∼2 RAnorth of 50°N. This decline results from a combination of northward decline in seafloor spreading, release of radiogenic helium from increased sediment thickness, and the possible emission of radiogenic helium through cold seeps along the Alaskan and North American margins. Finally, we derive an improved method of computing the excess helium isotope concentrations and that the distributions of bottom water3HeXS/4HeXSare consistent with what is known about bottom water flow patterns and the input of low3He/4He sedimentary helium.

     
    more » « less
  4. null (Ed.)
  5. Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web that functions in the absence of sunlight, but the role of protistan grazers in these highly productive ecosystems is largely unexplored. Here, we pair grazing experiments with a molecular survey to quantify protistan grazing and to characterize the composition of vent-associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the northeast Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to the surrounding deep seawater environment and may account for consuming 28 to 62% of the daily stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated protistan community was more species rich relative to the background deep sea, and patterns in the distribution and co-occurrence of vent microbes provide additional insights into potential predator–prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and stramenopiles, dominated the vent protistan community and included bacterivorous species, species known to host symbionts, and parasites. Our findings provide an estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse protistan communities play in deep-sea carbon cycling.

     
    more » « less
  6. This paper reviews the scientific motivation and challenges, development, and use of underwater robotic vehicles designed for use in ice-covered waters, with special attention paid to the navigation systems employed for under-ice deployments. Scientific needs for routine access under fixed and moving ice by underwater robotic vehicles are reviewed in the contexts of geology and geophysics, biology, sea ice and climate, ice shelves, and seafloor mapping. The challenges of under-ice vehicle design and navigation are summarized. The paper reviews all known under-ice robotic vehicles and their associated navigation systems, categorizing them by vehicle type (tethered, untethered, hybrid, and glider) and by the type of ice they were designed for (fixed glacial or sea ice and moving sea ice). 
    more » « less
  7. Abstract. Bioactive trace metals are critical micronutrients for marinemicroorganisms due to their role in mediating biological redox reactions,and complex biogeochemical processes control their distributions.Hydrothermal vents may represent an important source of metals tomicroorganisms, especially those inhabiting low-iron waters, such as in thesouthwest Pacific Ocean. Previous measurements of primordial 3Heindicate a significant hydrothermal source originating in the northeastern (NE)Lau Basin, with the plume advecting into the southwest Pacific Ocean at1500–2000 m depth (Lupton etal., 2004). Studies investigating the long-range transport of trace metalsassociated with such dispersing plumes are rare, and the biogeochemicalimpacts on local microbial physiology have not yet been described. Here wequantified dissolved metals and assessed microbial metaproteomes across atransect spanning the tropical and equatorial Pacific with a focus on thehydrothermally active NE Lau Basin and report elevated iron and manganeseconcentrations across 441 km of the southwest Pacific. The most intensesignal was detected near the Mangatolo Triple Junction (MTJ) and NortheastLau Spreading Center (NELSC), in close proximity to the previously reported3He signature. Protein content in distal-plume-influenced seawater,which was high in metals, was overall similar to background locations,though key prokaryotic proteins involved in metal and organic uptake,protein degradation, and chemoautotrophy were abundant compared to deepwaters outside of the distal plume. Our results demonstrate that tracemetals derived from the NE Lau Basin are transported over appreciabledistances into the southwest Pacific Ocean and that bioactive chemicalresources released from submarine vent systems are utilized by surroundingdeep-sea microbes, influencing both their physiology and their contributionsto ocean biogeochemical cycling. 
    more » « less